
Uber Stable: Balancing Driver Satisfaction and
Efficiency in the Ridesharing System

Rhea Acharya1

rlacharya@college.harvard.edu
Jessica Chen1

jessica chen@college.harvard.edu
Helen Xiao1

helenxiao@college.harvard.edu

Abstract—Peer-to-peer ride-sharing platforms like Uber, Lyft,
and DiDi have revolutionized the transportation industry and
labor market. At its essence, these systems tackle the bipartite
matching problem between two populations: riders and drivers.
This research paper comprises two main components: an initial
literature review of existing ride-sharing platforms and efforts
to enhance driver satisfaction, and the development of a novel
algorithm implemented through simulation testing to allow us
to make our own observations. The core algorithm utilized is
the Gale-Shapley deferred acceptance algorithm, applied to a
static matching problem over multiple time periods. In this
simulation, we construct a preference-aware task assignment
model, considering both overall revenue maximization and indi-
vidual preference satisfaction. Specifically, the algorithm design
incorporates factors such as passenger willingness-to-pay, driver
preferences, and location attractiveness, with an overarching
goal of achieving equitable income distribution for drivers while
maintaining overall system efficiency.

Through simulation, the paper compares the performance
of the proposed algorithm with random matching and closest
neighbor algorithms, looking at metrics such as total revenue,
revenue per ride, and standard deviation to identify trends
and impacts of shifting priorities. The Gale-Shapley deferred
acceptance (DA) algorithm was better equipped to optimize
driver revenue than other matching algorithms, such as closeness
matching or the Boston algorithm. We also found that stability
is important for better income equity, as the Boston algorithm
showed high variability for most metrics of results. Additionally,
the DA algorithm is compared to the Boston algorithm, and
the paper explores the effect of prioritizing proximity to passen-
gers versus distance from city center. Ultimately, the research
underscores the importance of continued exploration in areas
such as dynamic pricing models and additional modeling for
unconventional driving times to further enhance the findings on
the effectiveness and fairness of ride-sharing platforms.

Our simulation code can be found here.

I. INTRODUCTION

The subway breaks down on our way to work, it’s 2:30 a.m.
and we need to get home after a night of clubbing, we’re in a
new city and need to get from the airport to a museum across
town — what’s our first instinct? ”Call an Uber.” In this digital
age, we rely on ride-sharing apps as an integral part of daily
life. Passengers turn to driving apps, trusting that they will
be able to get from their current destination to the next in a
fast and safe way, without breaking their wallets. Ride-sharing
apps like Uber, Lyft, and Didi, eager to gain more revenue,
prioritize meeting these needs to provide a positive experience
to passengers, hoping they will use the apps more and spend
more money.

This means that apps have historically maximized rider
satisfaction, ensuring that riders are likely to continue to use
their services, as without them, the apps would not be able
to survive. However, research has shown that in matching
problems like this one, when the needs of one party is
prioritized, those of the other can be sometimes hurt. Here, by
prioritizing riders, the matching mechanisms might be creating
pessimal outcomes for the drivers. If the negative effects are
too large, this could have significant consequences on driver
satisfaction and equity.

Potential concerns related to this have already been seen by
the public eye. In recent years, these ridesharing apps have
come under fire for the driver experience that they provided.
For example, a CNBC article found that only 4% of Uber
drivers are still driving a year later. Additionally, Uber and Lyft
have bought been sued for withholding money from drivers,
and drivers are frequently commenting on the unsustainability
of the role in outlets like The New York Times. Why is this
the case? Is it inherent to the nature of the role, or is it at all
impacted by the Uber matching algorithm itself?

Motivated by these questions, we want to dive deeper
into the issue of driver equity, exploring through the driver’s
perspective how the design of matching algorithms can affect
the efficiency and equity. We will first have a literature review
of existing ridesharing platforms and efforts at increasing
driver satisfaction and then a novel algorithm implementation
with simulation testing. We will spend significant time defining
an application of the Gale-Shapley deferred acceptance algo-
rithm to this rideshare system matching problem, and we will
compare the results of this to other algorithms, like random
matching and closest neighbours.

II. PREVIOUS WORK

To begin, we want to better understand how the Uber
system works and the general ride-sharing matching algorithm.
Unfortunately, ridesharing services such as Uber and Lyft are
not required to share data like taxi services, so exact algorithms
can not be found through literature, yet we will review work
discussing the current research of these algorithms and what
they aim to achieve (in most detail). In order to ground
our knowledge of current work in the field to inform the
design of our simulation, we conducted a preliminary literature
review. Additionally, we will focus on the problems that these
algorithms pose to the driver-side of the system: in particular,
we will do brief literature review on the trade-offs between

https://github.com/rheaacharya11/uberstable

maximizing objectives in ride-share matching algorithms and
driver revenue distribution. Next, we will look at how Uber and
other ride-sharing companies generate matching algorithms to
best generate aggregate revenue for the company, and how
this may affect consumers of the app. Ultimately, we will use
these insights to inform the design of our simulation and will
aim to work towards a solution to various problems addressed,
through our preference ordering and nuanced matching algo-
rithm.

A. Two-Sided Fairness

Most ride-sharing platforms prioritize maximizing passen-
ger satisfaction, as this is directly correlated with maximizing
revenue. There is a trade-off between income distribution and
maximizing the overall objective, which in this case is to
maximize revenue of app and minimize the total distance
covered by drivers. While existing platforms primarily pri-
oritize customer satisfaction, Sühr et al [1] emphasize the
importance of considering fairness for drivers to ensure their
well-being and long-term stability. The authors propose a
framework for fair income distribution by amortizing equality
over time, allowing drivers to receive benefits proportional
to their active time on the platform. Specifically, the paper
suggests algorithms that minimize income inequality while
fairly distributing increases in customer waiting times. As we
construct our own algorithm and analyze our results, we try
to strike a balance between these two conflicting ideals, as we
applied its concepts to a static matching problem rather than
dynamic. [1]

B. Preference-Aware Task Assignment

Previous work in this field includes OSM-KIID [2], a
model whose long-form name is Online Stable Matching under
Known Identical Independent Distributions. In many matching
problems, especially those constructed by commercial plat-
forms like Uber, the aim is simply to maximize the profit
of the system as a whole. This means that frequently, the
individual preferences of parties on both sides are neglected,
which in the short term might seem inconsequential but in
the long term could have more drastic impacts, as participants
may not longer feel that it is worthwhile to themselves to
engage in the matching process. For example, in the rideshare
system, if drivers feel as though their time and effort are
not being compensated appropriately or they always get the
least desired rides (like those that start or end in remote
areas), then they may quit their job which is not good for the
system as a whole. The authors of OSM-KIID seek to create
a new model that takes into account both the overall revenue
minimization objective as well as the preference satisfaction
one, by maximizing revenue and minimizing blocking pairs.
We incorporate this focus on preferences within our deferred
acceptance algorithm, by taking into account factors like prior
income distribution and desirability of starting and ending
locations within the preference ordering generation. Addition-
ally, we account for individual diversity of preferences by
having unique cost coefficients among other nuances. [2]

III. ALGORITHM DESIGN

At the most fundamental level, we want to model the
rideshare system as a two-sided matching problem. Then, we
will explore how we can design our matching algorithm to this
bipartite problem with driver equity in mind. Specifically, we
want to achieve equitable income distribution among drivers
while maintaining comparable total welfare, as measured by
total revenue and aggregate wait time. Although, in reality, the
algorithms used by Uber, Lyft, and other ride-sharing apps are
dynamic, given the shortened timeframe of this project, we will
limit our algorithm to a static algorithm run over multiple time
periods.

A. Approach

1) Reformulate this problem into a deferred-acceptance
two-sided matching problem.

2) Driver-proposing: Create cost functions for drivers and
(fixed) payment functions. Drivers will propose a ride if
utility is positive for a given request.

3) Both drivers and riders have preference orders, and of
note is the fact that we will incorporate driver income
into preference ordering to look into how driver equity
is prioritized

B. Some Relevant Assumptions

• Instead of equilibrium pricing, price is determined by
riders’ fixed willingness to pay given location with their
WTP is fixed and known in a given round.

• We constrain goal to driver-side only, so we assume riders
simply want to get picked up.

• We have our ride-sharing platform as a benevolently
matching central allocation mechanism, with no revenue
generation abilities.

• We model this as a static problem, where the algorithm
only aims to solve problem for all drivers and riders
currently on the map. Drivers are constant through all
the rounds, allowing us to most helpfully keep track of
driver income, but we can generate new passengers at
each round.

C. Algorithm Flow

The Gale-Shapley algorithm is applied as follows:

1) Each rider has a willingness-to-pay(WTP) and both a
pickup and drop-off location.

2) Next, drivers see if utility, deemed to be price minus
cost, is positive, then proposes rides to riders based on
their preference orderings

3) Rider decides to accept/reject depending on wait time,
and will do so in an order based on their own preference
orderings. The preference orderings for both drivers
and riders will take into consideration certain heuris-
tics/tradeoffs as detailed below.

D. Algorithm Discussion

The Gale-Shapley algorithm, also known as deferred ac-
ceptance, results in a stable matching. This means that there
is no blocking pair consisting of a passenger and driver who
would prefer to be matched with each other than their current
pairing, based on their preference ordering. Additionally, the
Gale-Shapley algorithm is strategy-proof and optimal for the
proposing side, which in this case consists of the drivers. This
means that it is in the driver’s best interest to report their
honest attributes and preferences. Typically, the Gale-Shapley
algorithm is not strategy-proof for the non-proposing side, and
so there can be useful deviations for those entities. However,
some concerns here are less relevant in this specific case, given
the name of ridesharing requests. Since riders are currently in
one specific location and want to get to another, then it would
not make sense to misreport either of these values as then

The area of greater concern could be in the underreporting
of willingness-to-pay (WTP) by passengers, as if they are able
to be still matched with this lower WTP then they would prefer
to pay this lower amount if they are still completing their ride,
and thus having the same utility. We could potentially fix this
by having the payment amount be a critical value rather than
a fixed WTP, such that below this point, the ride would not
be completed and the passenger would not derive any utility.

We can make our algorithm more equitable if drivers care
less about the drop-off location’s distance from the center.
If drivers are willing to prioritize passengers that are farther
away, then this would help overall driver income equity but it
would hurt the company’s overall revenue.

E. Utilities Functions

Each passenger has a fixed willingness-to-pay (WTP), cal-
culated as a linear function of the Manhattan ride distance and
the Euclidean distance from city center, wrapped in a Gaussian
distribution. In other words,

WTP = α((rideLength+ cityCenterDist))/3

where α is a coefficient randomly sampled from a Gaussian
distribution with mean = 1 and standard deviation = 0.1,
rideLength is the Manhattan distance from the passenger’s
requested pickup and dropoff locations, and cityCenterDist

is the mean of the Euclidean distances of the pickup and
dropoff locations from the city center. The stochasticity of
α denotes that different riders may have different tradeoffs
and demand factors that are outside of our current scope,
naively capturing different people’s frugality. We calculated
the Passenger willingness ot pay like this to demonstrate that
passengers are willing to pay more for longer rides, as well
as rides that make the driver go more out of the way (rides
that begin and end farther from the city center).

Similarly, each driver’s cost is a function of their total
trip length and distance from the city center, multiplied by
a personal cost coefficient.

cost = γ(tripLength+ cityCenterDist)

where γ ∈ [0, 1] is a cost coefficient randomly sampled
from a Gaussian distribution, rideLength is the sum of
the Manhattan distances from the driver’s current location
to the passenger pickup location and the passenger’s pickup
to dropoff locations, and cityCenterDist is the Euclidean
distance of the dropoff locations from the city center. The cost
coefficient of γ denotes that different drivers may have cost
factors that are outside of our current scope.

While our riders simply post their WTP, our drivers must
take into consideration the difference between a rider’s WTP
and the cost of the trip. In other words, we have simplified
market equilibrium dynamics to be constrained to just driver-
side profit and utility. Our drivers have higher costs for longer
drives, as well as drives that result in them being father away
from the city center that would limit their ability to pick up
new rides.

F. Preference Orders
Both drivers and passengers take into consideration multiple

weighted factors when determining their preference orders.
In our project, we experiment with these hyperparameters for
how much weight should be placed on these different factors
to achieve the best results. Here, lower preference scores are
prioritized.

Drivers take into account two factors: profit and distance
from the city center. Normalizing either factor, driver d calcu-
lates the following preference score for a passenger p:

prefd(p) =− p.WTP+ wpd.cost(p)

d.cost(p) =α(d.pickupDist(p))

+ 0.1 ∗ (d.cityCenterDist(p))2

where wp is a randomly generated gaussian random variable
with mean = 1 and SD = 0.2 to demonstrate that different
drivers value cost of the drive different from each other.
d.pickupDist(p) is the manhattan distance between the driver
and passenger’s pickup location and d.cityCenterDist(p)
is the euclidean distance between the passenger’s dropoff
location and the city center, normalized. Drivers prioritize rides
that earn them more money, which is why we add the WTP
of the passenger (the whole function is flipped by the negative
since sorting in python sorts smallest to largest), while they
also want rides with the smallest cost to them possible.

Passengers also take into account two factors when ordering
drivers: wait time and the driver’s current aggregate income.
This is where our system attempts to implement income equity
among the drivers. By adding this factor into the preference
orders, the system allows drivers with lower aggregate income
in the current period to get higher priority in matching, thus
hypothetically promoting greater ride equity. We will test
whether this is a plausible solution or not in the simulation.
Normalizing either factor, passenger p calculates the following
preference score for a passenger d:

prefp(d) =wt(waitLength(p, d))

+ wi(aggIncome(d))

where wt is the weight applied to the pickup wait time (which,
due to our unit time per distance, is just the Manhattan distance
between the driver’s current location and the passenger’s
requested pickup location) and wi is the weight applied to
the driver’s aggregate income thus far. When the system does
not take into consider income distribution, we set wt = 1 and
wi = 0. We hypothesize that the greater the wi, the more
equitable our overall income distribution, at the tradeoff of
our aggregate system revenue.

IV. SIMULATION DESIGN

The Github repository containing our original simulation
code can be found here.

A. City Framework

We will simulate our city using a 100 x 100 Euclidean Grid,
with the idea being that it takes 1 time unit to travel a single
Euclidean distance. An important characteristic of many cities
is the city center, which will assume to be the direct center of
the grid. This is the heart of the city where most people and
places of interest exist.

Thus, we generated locations to be Euclidean points where
the x,y coordinates span from -50 to 50. To account for
the population densities, they are simulated randomly from
a normal distribution (with mean = 0 and standard deviation
= 20) to simulate that there are more people traveling to and
from the city center.

This is not only relevant for generating what the initial
function of each passenger and driver is, but it is only
relevant because then drivers will prefer rides that have drop-
off locations closer to the city center rather than those that end
up in more remote locations. This is because then they will
be more likely to be closer to their own location of interest or
to a new ride.

B. Driver Generation

Each driver will be instantiated at the start of the
first round. They will have the following attributes, each
initialized to 0, None, or the empty list: totalincome,
currentlocation, totalrides, preferenceordering,
matchedpassengername, and locations, which is a list of
locations that they have visited. With each driver, we will
also generate a unique cost coefficient and a starting location,
determined through the function of Euclidean distances from
the center touched upon above. Our set of drivers will stay
constant throughout the rounds, so that we can best analyze the
effects on cumulative driver income equity. In each subsequent
round, we will update the attributes intuitively based on the
matching and completed ride. The cost coefficient will stay
the same for a particular driver between rounds and the new
starting location will just be the ending location of the previous
ride if one was completed.

C. Passenger Generation

Unlike drivers, we will generate a new set of pas-
sengers in each round. Each will have the following at-
tributes, initialized to 0, None, or the empty list as best

fits: preferenceordering, WTP, currentlocation, and
dropofflocation. Once the matching and rides has been
completed, we assume the passengers are no longer involved
in the next round and generate an entirely new batch, so no
updating is necessary directly to the passengers.

D. Design

For the sake of having enough participants but keeping our
computational time reasonable, we chose to have 15 drivers
and 15 passengers in any given round, and we iterated over
50 total rounds to see the long-term distribution of income.
In addition to specifying the number of rounds and the
number of agents per round, the simulation can also vary the
Gaussian distribution of passenger instantiation away from the
city center, standard deviations of driver cost functions and
passenger WTPs, as well as the weight each agent may assign
its different priorities.

E. Random Matching

As a baseline, we explore what occurs when passengers
and drivers are matched randomly, which we implement by
randomly shuffling both lists and then creating matches in
order.

F. Closest Neighbours

Next, we will apply an algorithm that first matches the
pairing that are closest together. More concretely, we imple-
ment this by constructing a Euclidean distance matrix between
passengers and drivers and then solving the matching problem
using a Hungarian algorithm. In this case, this is a central
allocation mechanism, in that it is neither rider-proposing nor
driver-proposing and instead Uber is acting as the third party
to create the matches.

G. Boston Algorithm

The Boston Algorithm on the other hand is based on
immediate acceptance, where all first-choice proposals would
be accepted, then all second-choice proposals, and so forth,
based on the passengers’ preference ordering of drivers and
an initial random ordering of passengers in the case of ties.

H. Gale-Shapley

The heart of our exploration focuses on the results that occur
when we use the Gale-Shapley deferred acceptance algorithm.
Within this Gale-Shapley algorithm, we encapsulate various
factors, such as Manhattan distance, cost, distance from city
center, and driver income distribution, into one equation under
preference orderings for passengers’ ranking of drivers. In
this process, we assign different weights to these factors,
corresponding to how much we care about each factor. Part of
our results will be in modifying these weights and seeing how
this leads to different overall distributions and what tradeoffs
surface.

https://github.com/rheaacharya11/uberstable

V. RESULTS

For the most thorough understanding of the performance of
the deferred acceptance algorithm, we will compare the results
against that of Random Matching and Closest Neighbors
algorithms. First, we will output a chart of results of the
different algorithms against each other. First, let us look at
the total cumulative incomes of the four different algorithms

DA Driver prop Random Closest Boston Algo

14644.953 10084.181 12839.953 8196.113
15934.399 9555.306 12956.324 11372.515
17567.636 9247.306 13789.982 7963.459
18106.353 10164.92 13058.475 12930.511
17168.541 9536.810 14708.658 12343.745
17131.983 9469.655 12671.108 11733.939
13544.27 9469.239 11482.561 9644.839
16419.518 8971.500 12421.540 12778.096
15864.458 10368.144 13716.894 12983.909

As we can see from the chart, the driver proposing DA algo-
rithm always produced the greatest aggregate income, followed
by Closest (closets drivers and passengers are matched without
any side proposing), then the Boston algorithm where drivers
simply propose without passengers able to switch, followed
by random. This makes sense since drives are rejected by
passengers when wait time is too long, which results a lot
more often in random and Boston than Closest or DA.

VI. CONCLUSION

In conclusion, we found that the Gale-Shapley deferred
acceptance (DA) algorithm was better equipped to optimize
driver revenue than other matching algorithms, such as close-
ness matching or the Boston algorithm. We also found that
stability is important for better income equity, as the Boston
algorithm showed high variability for most metrics of results.

Surprisingly, we found that our hypothetically fair algorithm
(which is the DA algorithm modified to prioritize drivers with
lower aggregate income) was able to generate higher revenue
than the vanilla DA algorithm. This may imply that pursuing
income equitability is not only a labor-sustainable practice, but
also something that may achieve revenue upsides.

The ridesharing system is complex and hard to comprehen-
sively evaluate in any one research endeavor, much less one
for an undergraduate class. As such, there are several further
points of study. Of interest to us is implementing a dynamic or
competitive pricing model, where prices increase if demand is
greater than the supply, such as through origin-based surge
pricing. Additionally, we would like to model behavior at
abnormal times of driving, such as in the later hours of the
night or in rush hours like post-work or around holidays
like Thanksgiving. This could give insights into how changes
in demand and driver density could affect driver equity and
treatment.

REFERENCES

[1] Tom Sühr, Asia J. Biega, Meike Zehlike, Krishna P. Gummadi, and
Abhijnan Chakraborty. 2019. Two-Sided Fairness for Repeated Match-
ings in Two-Sided Markets: A Case Study of a Ride-Hailing Platform.
In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (KDD ’19). Association for
Computing Machinery, New York, NY, USA, 3082–3092.

[2] Zhao, B., Xu, P., Shi, Y., Tong, Y., Zhou, Z., & Zeng, Y. (2019).
Preference-Aware Task Assignment in On-Demand Taxi Dispatching:
An Online Stable Matching Approach. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 33(01), 2245-2252.

VII. APPENDIX: FIGURES

These graphs plot the title quantity in terms of number of
agents (total drivers plus passengers) in a given time period.

Fig. 1. Mean income per driver vs. number of agents. In random matching,
the mean income stays around the same at $600 per driver, which makes
sense as the ratio of drivers and passengers stay 1-to-1. In contrast, the
Boston algorithm has greater variability with increased agents, since given the
instability, there is increased capacity for the algorithm to output suboptimal
matchings, where passengers may not give input on better wait times, implying
better allocation. Then, the closeness and DA matching algorithms capture
greater revenue as agents increase. These results demonstrate that proximity
is a driver of revenue, and the DA algorithm builds on this revenue driver by
further considering of profit and city-center-clustering.

Fig. 2. Revenue per ride vs. number of agents. Here, we see that, despite
significantly better revenue performance for closeness matching and DA, we
see that the the closeness matching and random matching algorithms maintain
relatively similar per-ride revenue.

Fig. 3. Standard deviation of income per driver vs. number of agents. As
expected, standard deviation of driver income of the non-random algorithms
increase with the increased number of agents, while the random algorithms
maintains around the same variability.

Fig. 4. Total revenue of system vs. number of agents. This graph further
supports our findings in previous figures, which demonstrate that the DA
algorithm best capitalizes on more agents’ preferences to maximize revenue
for drivers. We also continue to see that the Boston matching algorithm
demonstrates higher variability due to instability.

Fig. 5. Total revenue based on fairness vs. number of agents. Interestingly,
we find that our hypothetically fair algorithm (DA with driver income taken
into consideration for preference ordering) achieves higher aggregate revenue
compared to the vanilla DA algorithm. This result would suggest that equitable
income distribution not only has positive implications on the labor market
and sustainable business practices, but also increases welfare and revenue
generation. Still, we may have to do further work to confirm the drivers for
this revenue-driving equity.

Fig. 6. Revenue per ride based on fairness vs. number of agents. Again, we
see our hypothetically fair algorithm performing better in increasing revenue
per ride.

Fig. 7. SD based on fairness vs. number of agents. The hypothetically fair
algorithm sees slightly greater standard deviation in income per driver.

Fig. 8. Revenue total vs. number of agents. Drivers better optimize revenue
by prioritizing an optimal dropoff location (one closer to the city center,
where they are likely to book the next passenger with less travel cost) over
naive proximity to passenger. This result suggests that the clustering of drivers
around passenger hot spots is significant in generating greater revenue. To
incentivize drivers to drop off passengers in remote locations, the system
may have to further distribute income.

Fig. 9. Revenue per ride vs. number of agents This graph supports the one
above, showing a strong difference between the revenue per ride for different
weights. In particular, total revenu is increased when drivers care more about
the dropoff location’s distance from the center, but this might be at the tradeoff
of less equity across drivers.

Fig. 10. Standard deviation vs. number of agents The standard deviation of
the driver incomes where drivers put more weight onto dropoff location of
passengers is higher than where they put more weight in passenger proximity.
Putting more focus on reaching driver with farther locations to travel can bring
more income equity, lowing the variance of driver incomes and flattening
driver income distribution.

	Introduction
	Previous Work
	Two-Sided Fairness
	Preference-Aware Task Assignment

	Algorithm Design
	Approach
	Some Relevant Assumptions
	Algorithm Flow
	Algorithm Discussion
	Utilities Functions
	Preference Orders

	Simulation Design
	City Framework
	Driver Generation
	Passenger Generation
	Design
	Random Matching
	Closest Neighbours
	Boston Algorithm
	Gale-Shapley

	Results
	Conclusion
	References
	Appendix: Figures

